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Ultra-sensitivity of numerical landscape evolution models to their initial conditions
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2Department of Geology, University of Illinois at Urbana-Champaign

Steady State Behaviors
Landscape evolution models (LEMs) can obtain two types of steady-
states, a flux-based steady-state or a topographic steady-state (see
Willett and Brandon, 2002).
 • Flux-based steady-state (FBSS): total influx of material into the
  control volume (via uplift or base-level fall) equals total outflux of
  material (via erosion).
 • Topographic steady-state (TSS): local incision and uplift are in
  balance in all locations, or incision is spatially uniform in the case
  of a lowering base-level. This produces a “frozen” landscape.
Willett, S. D., & Brandon, M. T. (2002). On steady states in mountain belts. Geology, 30(2), 175.
 https://doi.org/10.1130/0091-7613(2002)030<0175:OSSIMB>2.0.CO;2

Numerical Landscape Evolution Models

 • Numerical LEMs are sensitive to their initial conditions because
  they are deterministic.
 • Under constant forcing, landscapes in numerical LEMs tend
  towards TSS.
 • A common initial condition consists of a horizontal plane with rand-
  omized topographic perturbations.
 • Boundary conditions are shown in red below and remain the same
  throughout this presentation.

η - elevation; t - time; K - erodibility constant;
P - precipitation rate; A - drainage area;S - slope;
m,n - positive exponents; D - hillslope diffusion
coefficient; x,y - horizontal coordinates; 
B - base-level lowering rate0/ |yt Bη =∂ ∂ = −

Figure 1: An initial
randomized topo-
graphy evolves into
a TSS landscape.
Here,
K = 1x10 -5 m -0.5 yr -0.5;
P = 1 m yr -1;
m = 0.5;
n = 1.0;
D = 0.03 m 2 yr -1;
B = 1x10 -3 m yr -1 

Figure 2: A shallow
sinusoidal channel
in the initial topo-
graphy evolves into a
deep canyon at TSS.
Here,
K = 1x10 -5 m -0.5 yr -0.5;
P = 1 m yr -1;
m = 0.5;
n = 1.0;
D = 0.03 m 2 yr -1;
B = 1x10 -3 m yr -1 

Ultra-sensitivity
 • Numerical landscapes retain many topological features and signals
  from their initial conditions.
 • Ultra-sensitivity describes the numerical model’s ability to pre-
  serve minute perturbations from the initial topography. 

eXperimental Landscape
Evolution (XLE) Facility
 • Mist generator (P range:
  16 mm hr -1 - 411 mm hr -1)
 • Two independently movable
  weirs (B range: 5 mm hr -1 -
  200 mm hr -1)
 • Takes planform images and
  generates digital elevation
  models (DEMs) at a user-
  specified frequency (12 hr -1)
 • DEM resolution = 0.5 mm
 • Experimental substrate is 
  made from a silica flour
  (grain size ≈ 23 μm) water
  mixture (65:35 ratio) 
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Control Experiment
We use a control experiment to calibrate
parameters for our numerical model.

Parameters that are directly measured: 
 • B = 10.185 +/- 0.005 mm hr -1

 • P = 38 +/- 4 mm hr -1

Parameters that are fitted to the DEMs:
 • D = 7 (+6/-2) mm 2 hr -1

 • K = 0.97 +/- 0.05 mm -0.011hr -0.663

 • m = 0.337 +/- 0.006
 • n = 1.0 (assumed)

In the experiments, channels shift
laterally and autogenically generated
knickpoints migrate upstream through-
out the landscape’s evolution. These
processes are absent from the general
numerical model’s formulation.

Figure 3: XLE facility schematic

Figure 4: Time evolution of the
control experiment (3, 6, 12 hr)

Figure 5: Time evolution of lateral channel migration (top row) and autogenically
generated knickpoints (bottom row) in the XLE facility
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Model Data

Figure 6: 24 hr landscape evolution of the numerical model (left column) and the XLE
experiments (center and right columns). The sinusoidal signal is preserved throughout
the landscape evolution in the numerical model but is erased in the experiments.

Figure 7: Time series of mean incision rate
and total relief in the XLE experiments.

Numerical Model vs. XLE
Experiments: Conclusions
 • Numerical models preserve
  small perturbations from their
  initial conditions indefinitely
  after achieving TSS.
 • Information in the initial con-
  ditions of experimental land-
  scapes degrades over time,
  which is likely due to lateral
  channel incision and spatio-
  temporal fluctuations in
  incision, which are absent from
  general numerical LEMs.
 • Our experimental landscapes
  achieve FBSS but not TSS.
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