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Discussion and Conclusions

Quasi-steady Approximation
The quasi-steady approximation is commonly used in the field

Model
Sklar and Dietrich [e.g. 2004] introduced a mechanistic bed-

rock incision formulation that relates incision to the local sedi-
ment transport rate. Unlike the stream power incision model
(a commonly-used bedrock incision model), the bedrock inci-
sion rate is based on natural processes of bedrock incision. In
this model, we assume that the bedrock incision is caused by
sediment tools corrading the bed.

of river morphodynamics and sediment transport. For exam-
ple, flow hydraulics are commonly assumed to be steady
(quasi-steady) while the bed evolves slowly. CSA assumes
that the alluvial morphodynamics are quasi-steady while
MRSAA does not. This approximation simplifies the computa-
tion of the model but does not always apply. In the case of
flow hydraulics and sediment transport, the approximation is
invalid when there are rapidly varying hydrographs.
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Figure 5: Stripping of the alluvial cover.
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In the channel, the bed receives alluvium from both upstream
sources and hillslopes, increasing the alluvial thickness. The
local sediment transport rate removes alluvium, decreasing

Figure 8: Alluvial cover response
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Figure 1: Schematic of bedrock macro-roughness and alluvial thickness.

Reach Scale vs. Landscape Scale

A landscape-scaled MRSAA model is a much needed forward
step in better understanding the connections and feedbacks
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Figure 3: Conceptual drawing
of the landscape scale of a river.

Figure 10: Bedrock response
to increased sediment feed.
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